

451212 F /Revised: June 2025

Dexmedetomidine Injection, USP

Rx only

HIGHLIGHTS OF PRESCRIBING INFORMATION

These highlights do not include all the information needed to use DEXMEDETOMIDINE INJECTION safely and effectively. See full prescribing information for DEXMEDETOMIDINE INJECTION.

DEXMEDETOMIDINE Injection, for intravenous use
Initial U.S. Approval: 1999

RECENT MAJOR CHANGES

Dosage and Administration, Preparation of Solution (2.4)	08/2022
Warnings and Precautions, Hyperthermia or Pyrexia (5.7)	08/2022

INDICATIONS AND USAGE

Dexmedetomidine hydrochloride is a α_2 -adrenergic receptor agonist indicated for:

- Sedation of initially intubated and mechanically ventilated adult patients during treatment in an intensive care setting. Administer dexmedetomidine hydrochloride by continuous infusion not to exceed 24 hours. (1.1)
- Sedation of non-intubated adult patients prior to and/or during surgical and other procedures. (1.2)

DOSE AND ADMINISTRATION

- Individualize and titrate dexmedetomidine injection dosing to desired clinical effect. (2.1)
- Administer dexmedetomidine injection using a controlled infusion device. (2.1)
- Dilute the 200 mcg/2 mL (100 mcg/mL) vial contents in 0.9% sodium chloride solution to achieve required concentration (4 mcg/mL) prior to administration. (2.4)
- For Adult Intensive Care Unit Sedation: Initiate at one mcg/kg over 10 minutes, followed by a maintenance infusion of 0.2 to 0.7 mcg/kg/hour. (2.2)
- For Adult Procedural Sedation: Initiate at one mcg/kg over 10 minutes, followed by a maintenance infusion initiated at 0.6 mcg/kg/hour and titrated to achieve desired clinical effect with doses ranging from 0.2 to 1 mcg/kg/hour. (2.2)
- Alternative Doses: Recommended for patients over 65 years of age and awake fiberoptic intubation patients. (2.2)

DOSE FORMS AND STRENGTHS

Dexmedetomidine Injection, USP, 200 mcg (dexmedetomidine)/2 mL [100mcg (dexmedetomidine)/mL] in a single-dose glass vial. To be used after dilution. (3)

CONTRAINDICATIONS

None (4)

WARNINGS AND PRECAUTIONS

- Monitoring: Continuously monitor patients while receiving dexmedetomidine hydrochloride. (5.1)

Bradycardia and Sinus Arrest

Have occurred in young healthy volunteers with high vagal tone or with different routes of administration, e.g., rapid intravenous or bolus administration. (5.2)

- Hypotension and Bradycardia: May necessitate medical intervention. May be more pronounced in patients with hypovolemia, diabetes mellitus, or chronic hypertension, and in the elderly. Use with caution in patients with advanced heart block or severe ventricular dysfunction. (5.2)
- Co-administration with Other Vasodilators or Negative Chronotropic Agents: Use with caution due to additive pharmacodynamic effects. (5.2)

Transient Hypertension

Observed primarily during the loading dose. Consider reduction in loading infusion rate. (5.3)

Arousalability

Patients can become aroused/alert with stimulation; this alone should not be considered as lack of efficacy. (5.4)

Tolerance and Tachyphylaxis

Prolonged exposure to dexmedetomidine beyond 24 hours may be associated with tolerance and tachyphylaxis and a dose-related increase in adverse events. (5.6)

ADVERSE REACTIONS

- The most common adverse reactions (incidence >2%) in adults are hypotension, bradycardia, and dry mouth. (6.1)
- Adverse reactions in adults, associated with infusions >24 hours in duration include ARDS, respiratory failure, and agitation. (6.1)

To report SUSPECTED ADVERSE REACTIONS, contact Fresenius Kabi USA, LLC at 1-800-551-7176 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch.

DRUG INTERACTIONS

Anesthetics, Sedatives, Hypnotics, Opioids: Enhancement of pharmacodynamic effects.

Reduction in dosage of dexmedetomidine hydrochloride or the concomitant medication may be required. (7.1)

USE IN SPECIFIC POPULATIONS

- Geriatric Patients: Dose reduction should be considered. (2.2, 2.3, 5.2, 8.5)
- Hepatic Impairment: Dose reduction should be considered. (2.2, 2.3, 5.8, 8.6)

See 17 for PATIENT COUNSELING INFORMATION.

Pediatric use information is approved for Hospira Inc.'s PRECEDEXTM (dexmedetomidine hydrochloride) injection. However, due to Hospira Inc.'s marketing exclusivity rights, this drug product is not labeled with that information.

Recommended Dosage

Table 1: Recommended Dosage in Adult Patients

INDICATION	DOSAGE AND ADMINISTRATION
Initiation of Intensive Care Unit Sedation	For adult patients: a loading infusion of one mcg/kg over 10 minutes.
	For adult patients being converted from alternate sedative therapy: a loading dose may not be required.

For patients over 65 years of age: Consider a dose reduction (see Use in Specific Populations (8.5)).

For adult patients with impaired hepatic function: Consider a close reduction (see Use in Specific Populations (8.6), Clinical Pharmacology (12.3)).

INDICATION	DOSAGE AND ADMINISTRATION
Maintenance of Intensive Care Unit Sedation	For adult patients: a maintenance infusion of 0.2 to 0.7 mcg/kg/hour. The rate of the maintenance infusion should be adjusted to achieve the desired level of sedation.
	For patients over 65 years of age: Consider a dose reduction (see Use in Specific Populations (8.5)).

For adult patients with impaired hepatic function: Consider a dose reduction (see Use in Specific Populations (8.6), Clinical Pharmacology (12.3)).

INDICATION	DOSAGE AND ADMINISTRATION
Initiation of Procedural Sedation	For adult patients: a loading infusion of one mcg/kg over 10 minutes. For less invasive procedures such as ophthalmic surgery, a loading infusion of 0.5 mcg/kg given over 10 minutes may be suitable.
	For awake fiberoptic intubation in adult patients: a loading infusion of one mcg/kg over 10 minutes.

For patients over 65 years of age: a loading infusion of 0.5 mcg/kg over 10 minutes (see Use in Specific Populations (8.5)).

INDICATION	DOSAGE AND ADMINISTRATION
Maintenance of Procedural Sedation	For adult patients: the maintenance infusion is generally initiated at 0.6 mcg/kg/hour and titrated to achieve desired clinical effect with doses ranging from 0.2 to 1 mcg/kg/hour. Adjust the rate of the maintenance infusion to achieve the targeted level of sedation.
	For awake fiberoptic intubation in adult patients: a maintenance infusion of 0.7 mcg/kg/hour is recommended until the endotracheal tube is secured.

For patients over 65 years of age: Consider a dose reduction (see Use in Specific Populations (8.5)).

INDICATION	DOSAGE AND ADMINISTRATION
Initiation of Procedural Sedation	For adult patients with impaired hepatic function: Consider a dose reduction (see Use in Specific Populations (8.6), Clinical Pharmacology (12.3)).
	For adult patients with impaired hepatic function: Consider a dose reduction (see Use in Specific Populations (8.6), Clinical Pharmacology (12.3)).

For adult patients with impaired hepatic function: Consider a dose reduction (see Use in Specific Populations (8.6), Clinical Pharmacology (12.3)).

INDICATION	DOSAGE AND ADMINISTRATION
Maintenance of Procedural Sedation	For adult patients: the maintenance infusion is generally initiated at 0.6 mcg/kg/hour and titrated to achieve desired clinical effect with doses ranging from 0.2 to 1 mcg/kg/hour. Adjust the rate of the maintenance infusion to achieve the targeted level of sedation.
	For awake fiberoptic intubation in adult patients: a maintenance infusion of 0.7 mcg/kg/hour is recommended until the endotracheal tube is secured.

For patients over 65 years of age: Consider a dose reduction (see Use in Specific Populations (8.5)).

INDICATION	DOSAGE AND ADMINISTRATION
Initiation of Procedural Sedation	For adult patients with impaired hepatic function: Consider a dose reduction (see Use in Specific Populations (8.6), Clinical Pharmacology (12.3)).
	For adult patients with impaired hepatic function: Consider a dose reduction (see Use in Specific Populations (8.6), Clinical Pharmacology (12.3)).

For adult patients with impaired hepatic function: Consider a dose reduction (see Use in Specific Populations (8.6), Clinical Pharmacology (12.3)).

INDICATION	DOSAGE AND ADMINISTRATION
Maintenance of Procedural Sedation	For adult patients: the maintenance infusion is generally initiated at 0.6 mcg/kg/hour and titrated to achieve desired clinical effect with doses ranging from 0.2 to 1 mcg/kg/hour. Adjust the rate of the maintenance infusion to achieve the targeted level of sedation.
	For awake fiberoptic intubation in adult patients: a maintenance infusion of 0.7 mcg/kg/hour is recommended until the endotracheal tube is secured.

For patients over 65 years of age: Consider a dose reduction (see Use in Specific Populations (8.5)).

INDICATION	DOSAGE AND ADMINISTRATION
Initiation of Procedural Sedation	For adult patients with impaired hepatic function: Consider a dose reduction (see Use in Specific Populations (8.6), Clinical Pharmacology (12.3)).
	For adult patients with impaired hepatic function: Consider a dose reduction (see Use in Specific Populations (8.6), Clinical Pharmacology (12.3)).

For adult patients with impaired hepatic function: Consider a dose reduction (see Use in Specific Populations (8.6), Clinical Pharmacology (12.3)).

INDICATION	DOSAGE AND ADMINISTRATION
Maintenance of Procedural Sedation	For adult patients: the maintenance infusion is generally initiated at 0.6 mcg/kg/hour and titrated to achieve desired clinical effect with doses ranging from 0.2 to 1 mcg/kg/hour. Adjust the rate of the maintenance infusion to achieve the targeted level of sedation.
	For awake fiberoptic intubation in adult patients: a maintenance infusion of 0.7 mcg/kg/hour is recommended until the endotracheal tube is secured.

For patients over 65 years of age: Consider a dose reduction (see Use in Specific Populations (8.5)).

INDICATION	DOSAGE AND ADMINISTRATION
Maintenance of Procedural Sedation	For adult patients with impaired hepatic function: Consider a dose reduction (see Use in Specific Populations (8.6), Clinical Pharmacology (12.3)).
	For adult patients with impaired hepatic function: Consider a dose reduction (see Use in Specific Populations (8.6), Clinical Pharmacology (12.3)).

For adult patients with impaired hepatic function: Consider a dose reduction (see Use in Specific Populations (8.6), Clinical Pharmacology (12.3)).

INDICATION	DOSAGE AND ADMINISTRATION
Maintenance of Procedural Sedation	For adult patients: the maintenance infusion is generally initiated at 0.6 mcg/kg/hour and titrated to achieve desired clinical effect with doses ranging from 0.2 to 1 mcg/kg/hour. Adjust the rate of the maintenance infusion to achieve the targeted level of sedation.
	For awake fiberoptic intubation in adult patients: a maintenance infusion of 0.7 mcg/kg/hour is recommended until the endotracheal tube is secured.

For patients over 65 years of age: Consider a dose reduction (see Use in Specific Populations (8.5)).

INDICATION	DOSAGE AND ADMINISTRATION
Maintenance of Procedural Sedation	For adult patients with impaired hepatic function: Consider a dose reduction (see Use in Specific Populations (8.6), Clinical Pharmacology (12.3)).
	For adult patients with impaired hepatic function: Consider a dose reduction (see Use in Specific Populations (8.6), Clinical Pharmacology (12.3)).

and isoflurane, propofol, alfentanil and midazolam have been demonstrated. However, due to possible pharmacodynamic interactions, when co-administered with Dexmedetomidine Injection, a reduction in dosage of Dexmedetomidine Injection or the concomitant anesthetic, sedative, hypnotic or opioid may be required.

7.2 Neuromuscular Blockers

In one study of 10 healthy adult volunteers, administration of Dexmedetomidine Injection for 45 minutes at a plasma concentration of one ng/mL resulted in no clinically meaningful increases in the magnitude of neuromuscular blockade associated with rocuronium administration.

8 USE IN SPECIFIC POPULATIONS

8.1 Pregnancy

Risk Summary
Available data from published randomized controlled trials and case reports over several decades of use with intravenously administered dexmedetomidine during pregnancy have not identified a drug-associated risk of major birth defects and miscarriage; however, the reported exposures occurred after the first trimester. Most of the available data are based on studies with exposures that occurred at the time of cesarean section delivery, and these studies have not identified an adverse effect on maternal outcomes or infant Apgar scores. Available data indicate that dexmedetomidine crosses the placenta.

In animal reproduction studies, fetal toxicity that lower fetal viability and reduced live fetuses occurred with subcutaneous administration of dexmedetomidine to pregnant rats during organogenesis at doses 1.8 times the maximum recommended human dose (MRHD) of 1.8 mcg/kg/day.

Development toxicity (low pup weights and adult offspring weights, decreased F1 grip strength, increased early implantation loss and decreased viability of second-generation offspring) occurred when pregnant rats were subcutaneously administered dexmedetomidine at doses less than the clinical dose from late pregnancy through lactation and weaning (see Data).

The estimated background risk of major birth defects and miscarriage for the indicated population is unknown. All pregnancies have a background risk of birth defect, loss or other adverse outcomes. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2-4% and 15-20%, respectively.

Data

Animal Data
Increased post-implantation losses and reduced live fetuses in the presence of maternal toxicity (i.e. decreased body weight) were noted in a rat embryo-fetal development study in which pregnant dams were administered subcutaneous doses of dexmedetomidine 200 mcg/kg/day (equivalent to 1.8 times the intravenous MRHD of 17.8 mcg/kg/day based on body surface area [BSA]) during the period of organogenesis (Gestation Day [GD] 6 to 15). No malformations were reported.

No malformations or embryo-fetal toxicity were noted in a rabbit embryo-fetal development study in which pregnant does were administered dexmedetomidine intravenously at doses of up to 96 mcg/kg/day (approximately half the human exposure at the MRHD based on AUC) during the period of organogenesis (GD 6 to 18).

Reduced pup and adult offspring birth weights, and grip strength were reported in a rat developmental toxicology study in which pregnant females were administered dexmedetomidine subcutaneously at doses of 8 mcg/kg/day (0.07 times the MRHD based on BSA) during late pregnancy through lactation and weaning (GD 16 to postnatal day [PND] 25). Decreased viability of second generation offspring and an increase in early implantation loss along with delayed motor development occurred in the 32 mcg/kg/day group (equivalent to less than the clinical dose based on BSA) when first generation offspring were allowed to mate. This study limited dosing to hard palate closure (GD 15 to 18) through weaning instead of dosing from implantation (GD 6 to 7) to weaning (PND 21).

In a study in the pregnant rat, placental transfer of dexmedetomidine was observed when radiolabeled dexmedetomidine was administered subcutaneously.

8.2 Lactation

Risk Summary
Available published literature reports the presence of dexmedetomidine in human milk following intravenous administration (see Data). There is no information regarding the effects of dexmedetomidine on the breastfed infant or the effects of milk production. Advise women to monitor the breastfed infant for irritability. The developmental and health benefits of breastfeeding should be considered along with the mother's clinical need for Dexmedetomidine Injection and any potential adverse effects on the breastfed infant from Dexmedetomidine Injection or from the underlying condition.

Data
In two published clinical studies, a total of 14 women were given intravenous dexmedetomidine 6 mcg/kg/hr for 10 minutes after delivery followed by continuous infusion of 0.2-0.7 mcg/kg/hour. Breast milk and maternal blood samples were collected at 0, 6, 12, and 24 hours after discontinuation of dexmedetomidine. Plasma and milk dexmedetomidine concentrations were detectable up to 6 hours in most subjects, up to 12 hours in one subject and undetectable in all at 24 hours. The milk-to-plasma ratio from single paired maternal milk and plasma concentrations at each time point ranged from 0.53 to 0.95. The relative infant dose was estimated to range from 0.02 to 0.098%.

8.4 Pediatric Use

Sedation for Non-Invasive Procedures
The safety and effectiveness of Dexmedetomidine Injection have not been established in pediatric patients less than 1 month of age. **Pediatric use information is approved for Hospira Inc.'s PRECEDEX™ (dexmedetomidine hydrochloride) injection. However, due to Hospira Inc.'s marketing exclusivity rights, this drug product is not labeled with that information.**

ICU Sedation
The safety and efficacy of Dexmedetomidine Injection have not been established in pediatric patients for ICU sedation. One assessor-

blinded trial in pediatric patients and two open label studies in neonates were conducted to assess efficacy for ICU sedation. These studies did not meet their primary efficacy endpoints and the safety data submitted were insufficient to fully characterize the safety profile of Dexmedetomidine Injection for these patient populations.

8.5 Geriatric Use

Intensive Care Unit Sedation
A total of 729 patients in the clinical studies were 65 years of age and over. A total of 200 patients were 75 years of age and over. In patients greater than 65 years, a higher incidence of bradycardia and hypotension was observed following administration of Dexmedetomidine Hydrochloride (see Warnings and Precautions (5.2)). Therefore, a dose reduction may be considered in patients over 65 years of age (see Dosage and Administration (2.2, 2.3), Clinical Pharmacology (12.3)).

Procedural Sedation
A total of 131 patients in the clinical studies were 65 years of age and over. A total of 47 patients were 75 years of age and over. Hypotension occurred at a higher incidence in Dexmedetomidine injection-treated patients 65 years of age (72%) and 75 years of older (74% as compared to patients <65 years (47%). A reduced loading dose of 0.5 mcg/kg given over 10 minutes is recommended and a reduction in the maintenance infusion should be considered for patients greater than 65 years of age.

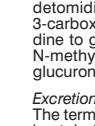
8.6 Hepatic Impairment

Since Dexmedetomidine Injection clearance decreases with increasing severity of hepatic impairment, dose reduction should be considered in patients with impaired hepatic function (see Dosage and Administration (2.2, 2.3), Clinical Pharmacology (12.3)).

9 DRUG ABUSE AND DEPENDENCE

Controlled Substance
Dexmedetomidine Hydrochloride is not a controlled substance.

Dependence
The dependence potential of Dexmedetomidine Injection has not been studied in humans. However, since studies in rodents and primates have demonstrated that Dexmedetomidine Injection exhibits pharmacologic actions similar to those of clonidine, it is possible that Dexmedetomidine Injection may produce a clonidine-like withdrawal syndrome upon abrupt discontinuation (see Warnings and Precautions (5.5)).


10 OVERDOSAGE

The tolerability of Dexmedetomidine Injection was studied in one study in which healthy adult subjects were administered doses at and above the recommended dose of 0.2 to 0.7 mcg/kg/hr. The maximum blood concentration achieved in this study was approximately 13 times the upper boundary of the therapeutic range. The most notable effects observed in two subjects who achieved the highest doses were first degree atrioventricular block and second-degree heart block. No hemodynamic compromise was noted with the atrioventricular block and the heart block resolved spontaneously within one minute.

Five adult patients received an overdose of Dexmedetomidine Hydrochloride in the intensive care unit sedation studies. Two of these patients had no symptoms reported; one patient received a 2 mcg/kg loading dose over 10 minutes (twice the recommended loading dose) and one patient received a maintenance infusion of 0.8 mcg/kg/hr. Two other patients who received a 2 mcg/kg loading dose and a 0.8 mcg/kg/hr infusion developed bradycardia and/or hypotension. One patient who received a loading bolus dose of undiluted Dexmedetomidine Injection (19.4 mcg/kg) had cardiac arrest from which he was successfully resuscitated.

11 DESCRIPTION

Dexmedetomidine Injection, USP is a sterile, nonpyrogenic solution suitable for intravenous infusion following dilution. Dexmedetomidine Injection contains dexmedetomidine hydrochloride as the active pharmaceutical ingredient. Dexmedetomidine hydrochloride is a central α_2 -adrenergic agonist. Dexmedetomidine hydrochloride is the S-enantiomer of medetomidine and is chemically described as (±)-4-(S)-1-(2,3-dimethylphenyl)ethyl-1H-imidazole monohydrochloride, and the structural formula is:

M.W. 236.7

12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action

Dexmedetomidine injection is a relatively selective centrally acting α_2 -adrenergic agonist with selective properties. α_2 selectivity is observed in animals following slow intravenous infusion of low and medium doses (10-300 mcg/kg). Both α_1 and α_2 activity is observed following slow intravenous infusion of high doses (\geq 1,000 mcg/kg) or with rapid intravenous administration.

12.2 Pharmacodynamics

In a study in healthy adult volunteers (N=10), respiratory rate and oxygen saturation remained within normal limits and there was no evidence of respiratory depression when Dexmedetomidine Injection was administered by intravenous infusion at doses within the recommended dose range (0.2-0.7 mcg/kg/hr).

12.3 Pharmacokinetics

Following intravenous administration to adults, dexmedetomidine exhibits the following pharmacokinetic parameters: a rapid distribution phase with a distribution half-life ($t_{1/2}$) of approximately

6 minutes; a terminal elimination half-life ($t_{1/2}$) of approximately 2 hours; and steady-state volume of distribution (V_{ss}) of approximately 118 liters. Clearance is estimated to be approximately 39 L/h. The mean body weight associated with this clearance estimate was 72 kg.

Dexmedetomidine exhibits linear pharmacokinetics in the dosage range of 0.2 to 0.7 mcg/kg/hr when administered to adults by intravenous infusion for up to 24 hours. Table 10 shows the main pharmacokinetic parameters when Dexmedetomidine Injection was infused (after appropriate loading doses) at maintenance infusion rates of 0.17 mcg/kg/hr (target plasma concentration of 0.3 ng/mL) for 12 and 24 hours, 0.33 mcg/kg/hr (target plasma concentration of 0.6 ng/mL) for 24 hours, and 0.70 mcg/kg/hr (target plasma concentration of 1.25 ng/mL) for 24 hours.

Table 10: Mean \pm SD Pharmacokinetic Parameters in Adults

Parameter	Loading Infusion (min)/Total Infusion Duration (hrs)			
	10 min/12 hrs	10 min/24 hrs	10 min/24 hrs	35 min/24 hrs
Dexmedetomidine Target Plasma Concentration (ng/mL) and Dose (mcg/kg/hr)				
0.3/0.17	0.3/0.17	0.6/0.33	1.25/0.70	
$t_{1/2}$, hour	1.78 \pm 0.30	2.22 \pm 0.59	2.23 \pm 0.21	2.50 \pm 0.61
CL, Liter/hour	46.3 \pm 8.3	43.1 \pm 6.5	35.3 \pm 6.8	36.5 \pm 7.5
V_{ss} , Liter	88.7 \pm 22.9	102.4 \pm 20.3	93.6 \pm 17.0	99.6 \pm 17.8
Avg C_{ss} ^a , ng/mL	0.27 \pm 0.05	0.27 \pm 0.05	0.67 \pm 0.10	1.37 \pm 0.20

Pediatric Patients
Pediatric use information is approved for Hospira Inc.'s PRECEDEX™ (dexmedetomidine hydrochloride) injection. However, due to Hospira Inc.'s marketing exclusivity rights, this drug product is not labeled with that information.

Patients with Hepatic Impairment

In adult subjects with varying degrees of hepatic impairment (Child-Pugh Class A, B, or C), clearance values for Dexmedetomidine Injection were lower than in healthy subjects. The mean clearance values for patients with mild, moderate, and severe hepatic impairment were 74%, 64%, and 53% of those observed in the normal healthy adult subjects, respectively. Mean clearances for free drug were 59%, 51% and 32% of those observed in the normal healthy adult subjects, respectively.

Table 11: Mean \pm SD Pharmacokinetic Parameters in Adults

Parameter	Mean Total Dose (mg) of Midazolam			
	Placebo (N=175)	Dexmedetomidine hydrochloride (N=178)	p-value	Standard deviation
Mean Total Dose (mg) of Midazolam				
0 mg	43 (25%)	108 (61%)	<0.001**	
0-4 mg	34 (19%)	36 (20%)		
>4 mg	98 (56%)	34 (19%)		

ITT (intent-to-treat) population includes all randomized patients.

* ANOVA model with treatment center.

** Chi-square.

A prospective secondary analysis assessed the dose of morphine sulfate administered to adult patients in the Dexmedetomidine Hydrochloride and placebo groups. On average, Dexmedetomidine Hydrochloride-treated patients received less morphine sulfate for pain than placebo-treated patients (0.47 versus 0.83 mg/h). In addition, 44% (79 of 178 patients) of Dexmedetomidine Hydrochloride patients received no morphine sulfate for pain versus 19% (33 of 175 patients) in the placebo group.

In a second study, 198 adult patients were randomized to receive placebo and 203 to receive Dexmedetomidine Hydrochloride by intravenous infusion at a dose of 0.4 mcg/kg/hr (without dose adjustment) between 0.2 and 0.6 mcg/kg/hr following an initial loading infusion of one mcg/kg intravenously over 10 minutes. The study drug infusion was adjusted to maintain a Ramsay sedation score of \geq 3. Patients were allowed to receive "rescue" propofol as needed to augment the study drug infusion. In addition, morphine sulfate was administered as needed for pain. The primary outcome measure for this study was the total amount of rescue medication (propofol) needed to maintain sedation as specified while intubated.

In Study 2, the sedative properties of Dexmedetomidine Injection were evaluated by comparing the percent of adult patients requiring rescue midazolam to achieve or maintain a specified level of sedation (Observer's Assessment of Alertness/Sedation Scale \leq 4). Adult patients were allowed to receive rescue midazolam as needed to achieve or maintain a Ramsay sedation score of \leq 4. After achieving the desired level of sedation, a local or regional anesthetic block was performed. Demographic characteristics were similar between the Dexmedetomidine and comparator groups. Efficacy results showed that Dexmedetomidine Injection was more effective than the comparator group when used to sedate non-intubated patients requiring monitored anesthesia care during surgical and other procedures (see Table 15).

Table 15: Observer's Assessment of Alertness/Sedation

Assessment Categories				
Responsiveness	Speech	Facial Expression	Eyes	Composite Score
Responds readily to name spoken in normal tone	Normal	Normal	Clear, no ptosis	5 (alert)
Lethargic response to name spoken in normal tone	Mild slowing or thickening	Mild relaxation	Glazed or mild ptosis (less than half the eye)	4
Responds only after name is called loudly and/or repeatedly	Slurring or prominent slowing	Marked relaxation (slack jaw)	Glazed and marked ptosis (half the eye or more)	3
Responds only after mild prodding or shaking	Few recognizable words	–		